{ "cells": [ { "cell_type": "markdown", "id": "9cd8c73a-a6b2-4a2c-acc3-ea96f365a2b5", "metadata": {}, "source": [ "### Exploring Pipeline APIs on Blueshift Notebooks\n", "\n", "The pipeline APIs on Blueshift provides a systematic way to analyse a large universe of instruments. In this notebook, we will set up a simple notebook to understand how to create and use pipelines.\n", "\n", "The first thing to do is to import the necessary classes from the `blueshift.pipeline` module, namely the `Pipeline` constructor, the `CustomFilter` and the `CustomFactor`. The last two are required as we want to define our own filters and factors (instead of using the built-in ones). We also need to import `EquityPricing` - this is a column definition that binds the pipeline to its required inputs. Let's define a custom filter and a custom factor as show below." ] }, { "cell_type": "code", "execution_count": 1, "id": "211d7ac3-084e-4528-b564-0c74727bb949", "metadata": {}, "outputs": [], "source": [ "from blueshift.research import use_dataset, run_pipeline\n", "\n", "from blueshift.pipeline import Pipeline, CustomFilter, CustomFactor\n", "from blueshift.pipeline.data import EquityPricing\n", "\n", "class TypicalPriceUp(CustomFilter):\n", " inputs = [EquityPricing.high, EquityPricing.low, EquityPricing.close]\n", " \n", " def compute(self,today,assets,out, high_price, low_price, close_price):\n", " typical = (high_price + low_price + close_price)/3\n", " out[:] = typical[-1] > typical[-2]\n", "\n", "class PeriodReturns(CustomFactor):\n", " inputs = [EquityPricing.close]\n", " \n", " def compute(self,today,assets,out, close_price):\n", " returns = close_price[-1]/close_price[0] - 1\n", " out[:] = returns" ] }, { "cell_type": "markdown", "id": "c704f018-5625-40b3-b18f-3590d7616a6a", "metadata": {}, "source": [ "In the above custom factor (`PeriodReturns`), we define the inputs to the pipeline computation to be only the \"close\" price column. However, the filter (`TypicalPriceUp`) requires three pricing columns. These are defined as the respective class variables ``inputs``. The pipeline class, when running the computation, automatically refers to this `inputs` class variables and passes on the required columns to the `compute` method. As a result, the `compute` method for the filter expects three extra pricing columns (apart from the always preset `today`, `assets` and `out` parameters) and the same for the factor has only one extra pricing column. With this, we simply write the required logic in the `compute` function and make sure the results are put back in the provided `out` parameter. Note: the filter must return `True` or `False` from its computations and the factors output should real values. \n", "\n", "Now lets create a pipeline and run it" ] }, { "cell_type": "code", "execution_count": 2, "id": "0610d103-0673-45f4-94b1-8d5934679516", "metadata": {}, "outputs": [], "source": [ "pipe = Pipeline()\n", "pipe.add(PeriodReturns(window_length=10), 'returns')\n", "pipe.set_screen(TypicalPriceUp(window_length=5))" ] }, { "cell_type": "markdown", "id": "c90445c8-9112-4555-a636-bb49496d3f11", "metadata": {}, "source": [ "We have added the `PeriodReturns` factor using the `add` method, and named it simply \"returns\". Also we used the `set_screen` method to add the filter `TypicalPriceUp` as well. Now let's run the pipeline over some period." ] }, { "cell_type": "code", "execution_count": 3, "id": "265a4c90-026e-43d8-bd2d-7fb29c321452", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | \n", " | returns | \n", "
---|---|---|
2020-10-12 00:00:00+05:30 | \n", "Equity(3MINDIA [3]) | \n", "0.072567 | \n", "
Equity(AARTIDRUGS [7]) | \n", "0.324145 | \n", "|
Equity(AAVAS [10]) | \n", "0.061269 | \n", "|
Equity(ABB [12]) | \n", "0.028202 | \n", "|
Equity(ABBOTINDIA [13]) | \n", "-0.006489 | \n", "|
... | \n", "... | \n", "... | \n", "
2020-10-15 00:00:00+05:30 | \n", "Equity(WINPRO [710]) | \n", "0.001053 | \n", "
Equity(XCHANGING [1492]) | \n", "-0.050919 | \n", "|
Equity(ZODIACLOTH [1503]) | \n", "-0.001485 | \n", "|
Equity(ZOTA [1505]) | \n", "-0.008174 | \n", "|
Equity(ZYDUSWELL [1508]) | \n", "-0.008715 | \n", "
1437 rows × 1 columns
\n", "\n", " | returns | \n", "
---|---|
Equity(3MINDIA [3]) | \n", "0.072567 | \n", "
Equity(AARTIDRUGS [7]) | \n", "0.324145 | \n", "
Equity(AAVAS [10]) | \n", "0.061269 | \n", "
Equity(ABB [12]) | \n", "0.028202 | \n", "
Equity(ABBOTINDIA [13]) | \n", "-0.006489 | \n", "
... | \n", "... | \n", "
Equity(WONDERLA [1490]) | \n", "0.070835 | \n", "
Equity(ZENTEC [1501]) | \n", "0.091623 | \n", "
Equity(ZOTA [1505]) | \n", "0.002055 | \n", "
Equity(ZYDUSLIFE [221]) | \n", "0.130435 | \n", "
Equity(ZYDUSWELL [1508]) | \n", "-0.005943 | \n", "
377 rows × 1 columns
\n", "